30 research outputs found

    Finding and Recommending Scholarly Articles

    Full text link
    The rate at which scholarly literature is being produced has been increasing at approximately 3.5 percent per year for decades. This means that during a typical 40 year career the amount of new literature produced each year increases by a factor of four. The methods scholars use to discover relevant literature must change. Just like everybody else involved in information discovery, scholars are confronted with information overload. Two decades ago, this discovery process essentially consisted of paging through abstract books, talking to colleagues and librarians, and browsing journals. A time-consuming process, which could even be longer if material had to be shipped from elsewhere. Now much of this discovery process is mediated by online scholarly information systems. All these systems are relatively new, and all are still changing. They all share a common goal: to provide their users with access to the literature relevant to their specific needs. To achieve this each system responds to actions by the user by displaying articles which the system judges relevant to the user's current needs. Recently search systems which use particularly sophisticated methodologies to recommend a few specific papers to the user have been called "recommender systems". These methods are in line with the current use of the term "recommender system" in computer science. We do not adopt this definition, rather we view systems like these as components in a larger whole, which is presented by the scholarly information systems themselves. In what follows we view the recommender system as an aspect of the entire information system; one which combines the massive memory capacities of the machine with the cognitive abilities of the human user to achieve a human-machine synergy.Comment: 14 pages, part of the forthcoming MIT book "Bibliometrics and Beyond: Metrics-Based Evaluation of Scholarly Research" edited by Blaise Cronin and Cassidy R. Sugimot

    Merging the Astrophysics and Planetary Science Information Systems

    Full text link
    Conceptually exoplanet research has one foot in the discipline of Astrophysics and the other foot in Planetary Science. Research strategies for exoplanets will require efficient access to data and information from both realms. Astrophysics has a sophisticated, well integrated, distributed information system with archives and data centers which are interlinked with the technical literature via the Astrophysics Data System (ADS). The information system for Planetary Science does not have a central component linking the literature with the observational and theoretical data. Here we propose that the Committee on an Exoplanet Science Strategy recommend that this linkage be built, with the ADS playing the role in Planetary Science which it already plays in Astrophysics. This will require additional resources for the ADS, and the Planetary Data System (PDS), as well as other international collaboratorsComment: Whitepaper submitted to the Committee on an Exoplanet Science Strateg
    corecore